

The 16<sup>th</sup> U.S.-Korea Forum on Nanotechnology

# **Wireless Electronic Tattoos**

Nanshu Lu Temple Foundation Endowed Associate Professor

Department of Aerospace Engineering and Engineering Mechanics Department of Biomedical Engineering Texas Materials Institute The University of Texas at Austin

September 23, 2019





#### Bioelectronics – Closing the Loop for Internet of Health (IoH)



Prof. Dae-Hyeong Kim Seoul National Univ.



nanshulu@utexas.edu

2

The University of Texas at Austin

# **Example Applications of Wearable Electronics**







HUMAN-ROBOT INTERFACE





### Silicon vs. Skin – A Mechanical Challenge

 $E_{\rm Si} = 130 \text{ GPa}, \ \varepsilon_{\rm frac} = 1\%$ 



Credit: Intel



$$E_{\text{Skin}} = 130 \text{ kPa}, \ \varepsilon_{\text{ouch}} = 20\%$$



Credit: ICTGraphicsLab @ USC







FEM

Theoretical

Sensors 13, 8577-8594 (2013) IJSS 51, 4026-4037 (2014) IJF 190, 99 (2014) Nat. Photonics 8, 643-649 (2014) ACS Nano 8, 12265-12271 (2014) EML 2, 37-45 (2015) Curr. Opin. Solid St. M. 19, 149-159 (2015) IJSS 87, 48-60 (2016) Smart Mater. Struct. 25, 035037 (2016) JAM 84, 021004 (2017) Light 7, e17138 (2018) JAM 86, 051010 (2019)

E-Tattoo



#### **Bio-Electronics Interface**

JMR 30, 2702-2712 (2015) Adv. Healthc. Mater. 5, 80-87 (2015) JAM 83, 041007 (2016) Soft Robotics 3, 99-100 (2016) Adv. Funct. Mater. 26, 3207-3217 (2016) JAM 84, 111003 (2017) EML 15, 130 (2017) J. Roy. Soc. Interface 14, 20170377 (2017) Soft Matter 14, 8509 (2018) EML 30, 100496 (2019)





#### **Soft Bioelectronics**

Nature Nanotech. 9, 397-404 (2014) Adv. Mater. 27, 6423-6430 (2015) ACS Nano 9, 5937-5946 (2015) Nature Nanotech. 11, 566-572 (2016) Sci. Transl. Med. 8, 86 (2016) ACS Nano 11, 7634-7641 (2017) Nature Comm. 8,1664 (2017) npj Flexible Electronics 2, 6 (2018) Sensors 18, 1269 (2018) Micromachines 9, 170 (2018) Adv. Funct. Mater. 1808247 (2019) Adv. Mater. Tech. 1900117 (2019) Adv. Sci. 1900290 (2019) NPG Asia Materials 11, 43 (2019)



#### **Freeform Manufacture**

Adv. Mater. 27, 6423-6430 (2015) EML 2, 37-45 (2015) ACS Nano 11, 7634-7641 (2017) Adv. Mater. Tech. 1800600 (2019) Adv. Mater. Tech. 1900117 (2019)



#### **2D Materials & Devices**

Adv. Mater. Interface 2, 1500176 (2015) Nano Lett. 15, 1883-1890 (2015) Nature Nanotech. 11, 566-572 (2016) EML 13, 42-77 (2017) ACS Nano 11, 7634-7641 (2017) Nano Lett. 17, 5464 (2017) npj 2D Materials and Applications 2, 19 (2018) PNAS 115, 7884 (2018) PRL 121, 266101 (2018) Nature 567, 71 (2019) 2D Materials, accepted (2019) JMPS, revision submitted (2019)

Stretchability and compliance can be achieved by serpentine structures of ANY material.



# **Epidermal Electronics (E-Tattoos)**

#### Ultrathin, ultrasoft, noninvasive, stretchable and multifunctional



TEXAS

7

# Ultra-Soft & Ultra-Thin $\rightarrow$ Ultimate Conformability



**Conformable contact ensures** 

- Low interface impedance  $\rightarrow$  higher signal to noise ratio
- No slippage  $\rightarrow$  less motion artifacts, more accurate measurement of skin deformation
- Better heat or mass transfer across the skin-tattoo interface



Jeong, Rogers\* et. al., Adv. Mater. 25, 6839 (2013).

nanshulu@utexas.edu



8

The University of Texas at Austir

#### **Ecoflex on skin**

# World's Thinnest Materials – 2D Materials





Jang, Lu\*, et al., npj 2D Materials and Applications (invited review), in preparation (2019). 9



#### Cut-and-Paste Manufacture of Graphene E-Tattoo Sensors (GETS)



Prof. Deji Akinwande **UT-Austin ECE** 



Dr. Shideh K. Ameri **UT-Austin ECE** (Queen's University, Canada)

Ameri, Akinwande\*, Lu\*, et al., ACS Nano 11, 7634 (2017).

nanshulu@utexas.edu



The University of Texas at Austin

### **GETS** Characterization



The University of Texas at Austir

## Stretchability of Graphene/PMMA



nanshulu@utexas.edu

The University of Texas at Austin

### GETS Are Fully Conformable to the Skin



Ameri, Akinwande\*, Lu\*, et al., ACS Nano 11, 7634 (2017).





#### GETS Are as Deformable as Skin



Ameri, Akinwande\*, Lu\*, et al., ACS Nano 11, 7634 (2017).





## **Multifunctional GETS**



Ameri, Akinwande\*, Lu\*, et al., ACS Nano 11, 7634 (2017).

#### 😡 nanshulu@utexas.edu





# Transparent GETS for Electrooculogram (EOG)



Time (s)

Ameri, Akinwande\*, Lu\*, et al., npj 2D Materials and Applications 2, 19 (2018).

😡 nanshulu@utexas.edu

The University of Texas at Austin

Time (s)

# Imperceptible Human Robot Interface (HRI) by GETS



Ameri, Akinwande\*, Lu\*, et al., npj 2D Materials and Applications 2, 19 (2018).



nanshulu@utexas.edu

### **Graphene-Based E-Tattoo for Diabetics**



The University of Texas at Austin

# Going Wireless – Near Field vs. Far Field Technology





| Near Field (Induction)                               |                                                            | Far Field (Radiation)                                    |                                     |
|------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|
| Advantage                                            | Disadvantage                                               | Advantage                                                | Disadvantage                        |
| <ul> <li>Less power<br/>consumption</li> </ul>       | <ul> <li>Data transfer rate</li> <li>: 424 kpbs</li> </ul> | <ul> <li>Data transfer rate</li> <li>: 3 Mbps</li> </ul> | <ul> <li>Battery powered</li> </ul> |
| <ul> <li>Passive mode<br/>without battery</li> </ul> | <ul> <li>Operating range</li> <li>: ~10 cm</li> </ul>      | <ul> <li>Operating range</li> <li>: ~10 m</li> </ul>     |                                     |



DOMINANT TERMS IN THE REGION (**Power density** attenuation)

*r* : distance





nanshulu@utexas.edu

#### "Cut-Solder-Paste" Method for Integrating ICs on E-Tattoos





**FEXAS** 

The University of Texas at Austin

#### Robustness of Wireless E-Tattoos



Jeong, Lu\*, et al., Adv. Mater. Tech. 1900117 (2019).





### Assembly and Disassembly up to 20 times







23

Jeong, Lu\*, et al., Adv. Mater. Tech. 1900117 (2019).

### Acknowledgement













Cockrell School of Engineering



24